Equation of Motion ==================== The most important reference about the equation of motion for neutrinos is [sigl1993]_. .. [sigl1993] Sigl, G., & Raffelt, G. (1993). General kinetic description of relativistic mixed neutrinos. Nuclear Physics B, 406(1–2), 423–451. http://doi.org/10.1016/0550-3213(93)90175-O Without much effort, we know that the equation of motion is the liouville's equation .. math:: i \frac{d}{dt}\rho = [H,\rho]. For the purpose of neutrino oscillations, we always assume they travel with speed of light thus .. math:: \frac{d}{dt} = \frac{d}{dr}, where :math:`r` is the distance travelled by the neutrino. However, in general, what we should have is .. math:: \frac{d}{dt} = \partial_t + \mathbf v\cdot \boldsymbol{\nabla}. The Hamiltonian is composed of three different terms, .. math:: H = H_v + H_m + H_{\nu\nu}, where .. math:: H_v =& -\frac{1}{2}\beta\eta \omega_0 \sigma_3\\ H_m =& \frac{1}{2} \sqrt{2}G_F n_e \sigma_3 \\ H_{\nu\nu} =& \sqrt{2}G_F \int d\omega d\Omega_{\hat v'} n(\omega,\hat v')\beta(\hat v')\rho(\omega,\hat v') (1-\hat v \cdot \hat v'), where :math:`\eta=\pm 1` for Normal Hierarchy and Inverted Hierarchy respectively, :math:`\beta=1` for neutrinos and :math:`\beta=-1` for antineutrinos. In other words, the vacuum frequency is :math:`\omega_v = \eta \omega_0`. :math:`\beta(\hat v')` indicates wether the density matrix :math:`\rho(\omega,\hat v')` is for neutrinos or antineutrinos. If :math:`\rho(\omega,\hat v')` is for antineutrinos, :math:`\beta(\hat v')=-1`, otherwise :math:`\beta(\hat v')=1`. More explicitly, the neutrino-neutrino interaction Hamiltonian is .. math:: H_v =& \begin{cases} -\frac{1}{2}\eta \omega_0 \sigma_3 & \text{for neutrinos}\\ \frac{1}{2}\eta \omega_0 \sigma_3 & \text{for antineutrinos} \end{cases}\\ H_{\nu\nu} =& \begin{cases} \sqrt{2}G_F \int d\omega d\Omega_{\hat v'} n(\omega,\hat v')\rho(\omega,\hat v') (1-\hat v \cdot \hat v') & \text{interacting with neutrinos} \\ - \sqrt{2}G_F \int d\omega d\Omega_{\hat v'} n(\omega,\hat v')\bar\rho(\omega,\hat v') (1-\hat v \cdot \hat v') & \text{interacting with antineutrinos} \end{cases} Please note that in this notion, 1. :math:`\omega_0` **is meant to be the absolute value of the frequency**, since :math:`\eta` takes care of the signs. 2. the integral in :math:`H_{\nu\nu}` must take care of both interactions with neutrinos and anti-neutrinos, thus the density matrix is not only for neutrinos. For the simplicity of notions, we define some new quantities. 1. We define :math:`\lambda` to measure the matter interactions .. math:: \lambda = \sqrt{2} G_F n_e. 2. Angle distribution of number density is defined as .. math:: f(\hat v) = \frac{n(\omega,\hat v)}{n_{total}}, where :math:`n_{total}` is the total number density of neutrinos for all energies. It can also be defined for anti-neutrinos .. math:: \bar f(\hat v) = \frac{n(\omega,\hat v)}{\bar n_{total}}, where :math:`\bar n_{total}` is the total number density of anti-neutrinos. In fact, the direction of momentum :math:`\hat v` depends only on an angle for line models, hence :math:`f(\theta)`. With this definition, we know that the number density of neutrinos within an angle :math:`[\theta, \theta + d\theta]` can be calculated .. math:: n_{total} f(\theta) d\theta. Similarly, the the number density of antineutrinos within angle :math:`[\theta, \theta+d\theta]` is .. math:: \bar n_{total} \bar f(\theta) d\theta. 3. Total number density of neutrinos and anti-neutrinos are related through a asymmetry parameter .. math:: \alpha = \frac{\bar n_{total} }{n_{total}}. With the two definitions we simplify the matter effect and neutrino self-interaction .. math:: H_m =& \frac{1}{2} \lambda \sigma_3 \\ H_{\nu\nu} =& \sqrt{2}G_F n_{total} \int d\omega d\Omega_{\hat v'} f(\omega,\hat v)\rho(\omega,\hat v') (1-\hat v \cdot \hat v') \\ & - \sqrt{2}G_F \bar n_{total} \int d\omega d\Omega_{\hat v'} \bar f(\omega,\hat v)\bar\rho(\omega,\hat v') (1-\hat v \cdot \hat v') \\ =& \frac{1}{2}\mu \int d\omega d\Omega_{\hat v'} f(\omega, \hat v)\rho(\omega,\hat v') (1-\hat v \cdot \hat v') \\ & - \frac{1}{2}\alpha \mu \int d\omega d\Omega_{\hat v'} \bar f(\omega, \hat v)\bar\rho(\omega,\hat v') (1-\hat v \cdot \hat v') , where .. math:: \mu = 2\sqrt{2} G_F n_{total}.